Copied to
clipboard

G = C32⋊C36order 324 = 22·34

The semidirect product of C32 and C36 acting via C36/C6=C6

metabelian, supersoluble, monomial

Aliases: C32⋊C36, C33.1C12, (C3×C6).C18, C3⋊Dic3⋊C9, C6.2(S3×C9), C32⋊C91C4, (C3×C18).1S3, (C3×C9)⋊1Dic3, C2.(C32⋊C18), (C32×C6).1C6, C3.2(C9×Dic3), C6.10(C32⋊C6), C3.5(C32⋊C12), C32.12(C3×Dic3), (C3×C3⋊Dic3).C3, (C3×C6).26(C3×S3), (C2×C32⋊C9).1C2, SmallGroup(324,7)

Series: Derived Chief Lower central Upper central

C1C32 — C32⋊C36
C1C3C32C33C32×C6C2×C32⋊C9 — C32⋊C36
C32 — C32⋊C36
C1C6

Generators and relations for C32⋊C36
 G = < a,b,c | a3=b3=c36=1, ab=ba, cac-1=a-1b, cbc-1=b-1 >

2C3
3C3
6C3
9C4
2C6
3C6
6C6
2C32
3C32
3C9
6C32
6C9
3Dic3
9C12
9Dic3
2C3×C6
3C3×C6
3C18
6C18
6C3×C6
2C3×C9
3C3×Dic3
9C36
9C3×Dic3
2C3×C18
3C9×Dic3

Smallest permutation representation of C32⋊C36
On 36 points
Generators in S36
(2 26 14)(3 27 15)(5 17 29)(6 18 30)(8 32 20)(9 33 21)(11 23 35)(12 24 36)
(1 25 13)(2 14 26)(3 27 15)(4 16 28)(5 29 17)(6 18 30)(7 31 19)(8 20 32)(9 33 21)(10 22 34)(11 35 23)(12 24 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (2,26,14)(3,27,15)(5,17,29)(6,18,30)(8,32,20)(9,33,21)(11,23,35)(12,24,36), (1,25,13)(2,14,26)(3,27,15)(4,16,28)(5,29,17)(6,18,30)(7,31,19)(8,20,32)(9,33,21)(10,22,34)(11,35,23)(12,24,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)>;

G:=Group( (2,26,14)(3,27,15)(5,17,29)(6,18,30)(8,32,20)(9,33,21)(11,23,35)(12,24,36), (1,25,13)(2,14,26)(3,27,15)(4,16,28)(5,29,17)(6,18,30)(7,31,19)(8,20,32)(9,33,21)(10,22,34)(11,35,23)(12,24,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(2,26,14),(3,27,15),(5,17,29),(6,18,30),(8,32,20),(9,33,21),(11,23,35),(12,24,36)], [(1,25,13),(2,14,26),(3,27,15),(4,16,28),(5,29,17),(6,18,30),(7,31,19),(8,20,32),(9,33,21),(10,22,34),(11,35,23),(12,24,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)]])

60 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H4A4B6A6B6C6D6E6F6G6H9A···9F9G···9L12A12B12C12D18A···18F18G···18L36A···36L
order123333333344666666669···99···91212121218···1818···1836···36
size111122266699112226663···36···699993···36···69···9

60 irreducible representations

dim1111111112222226666
type+++-+-
imageC1C2C3C4C6C9C12C18C36S3Dic3C3×S3C3×Dic3S3×C9C9×Dic3C32⋊C6C32⋊C12C32⋊C18C32⋊C36
kernelC32⋊C36C2×C32⋊C9C3×C3⋊Dic3C32⋊C9C32×C6C3⋊Dic3C33C3×C6C32C3×C18C3×C9C3×C6C32C6C3C6C3C2C1
# reps11222646121122661122

Matrix representation of C32⋊C36 in GL6(𝔽37)

100000
0260000
0010000
000100
0000100
0000026
,
2600000
0260000
0026000
0001000
0000100
0000010
,
0000260
0000026
000100
0110000
0011000
3600000

G:=sub<GL(6,GF(37))| [1,0,0,0,0,0,0,26,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,0,10,0,0,0,0,0,0,26],[26,0,0,0,0,0,0,26,0,0,0,0,0,0,26,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10],[0,0,0,0,0,36,0,0,0,11,0,0,0,0,0,0,11,0,0,0,1,0,0,0,26,0,0,0,0,0,0,26,0,0,0,0] >;

C32⋊C36 in GAP, Magma, Sage, TeX

C_3^2\rtimes C_{36}
% in TeX

G:=Group("C3^2:C36");
// GroupNames label

G:=SmallGroup(324,7);
// by ID

G=gap.SmallGroup(324,7);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,79,2164,2170,7781]);
// Polycyclic

G:=Group<a,b,c|a^3=b^3=c^36=1,a*b=b*a,c*a*c^-1=a^-1*b,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊C36 in TeX

׿
×
𝔽